Rajeshwar Reddy Sagyam[a], Himabindu Vurimidi[b], Pratap Reddy Padi[a] and Mahesh Reddy Ghanta[a]*
[a] Department of Research and Development; Unit-III, Dr. Reddys Laboratories Ltd., Plot.No.116, S.V. Co-operative Industrial Estate, IDA, Bollaram, Jinnaram

Medak Dist.-502325, Andhra Pradesh, India
[b] Institute of Science and Technology, Center for Environmental Science, J. N. T. University, Kukatpally, Hyderabad-500 072, India
*Corresponding author: Tel: +91 9849250324, Fax: +9140 23750984, E-mail: reddyghanta@yahoo.com

Received April 20, 2006

An efficient synthesis of highly substituted pyrrole and bis pyrrole derivatives is reported.
J. Heterocyclic Chem., 44, 923 (2007).

INTRODUCTION

Pyrrole heterocycle is an important structural attribute in many bioactive natural products, [1,2] therapeutic compounds [3] and new organic materials [4]. Consequently, the efficient assembly of this class of molecules is a significant objective in synthetic chemistry. The construction of the pyrrole ring system typically involves condensation of preformed intermediates with amines [5]. More contemporary transition-metal-based strategies include the addition of chromium carbenes to dipolarophiles [6], the copper(I)catalyzed cycloisomeri- zation of alkynyl imines [7] and rhodium-catalysed reactions, either $\mathrm{N}-\mathrm{H}$ insertions [8] or the combination of isonitriles and 1,3-diketones [9]. Herein, we report the realization of an efficient assembly of highly substituted pyrroles (7) and bis pyrroles (8) by utilizing a Paal-Knorr sequence between 1,4-diketo compound (6) and amines catalysed by an organic acid.

RESULTS AND DISCUSSION

The required key 1,4-diketo intermediate, 2-[2-(4-fluorophenyl)-2-oxo-1-phenylethyl]-4-methyl-3-oxo- N phenylpentanamide (6) was accessed by a synthetic sequence starting from commercially available 3-methyl-2-butanone (1). Reaction of ketone 1 with carbonic acid dimethyl ester (2) in the presence of sodium hydride afforded 4-methyl-3-oxo-pentanoic acid methyl ester (3), which on reaction with aniline gave 4-methyl-3-oxo-pentanoic acid phenylamide (4). Condensation of 4 with benzaldehyde resulted in 2-benzylidine-4-methyl-3-oxo-pentanoic acid phenylamide (5) and subsequent condensation with 4-fluorobenzaldehyde yielded the desired highly substituted key intermediate 6 (Scheme 1). The structural assignment of $\mathbf{6}$ was in agreement with the reported literature [10].

1,4-Diketo derivative 6 reacted readily with various aliphatic and aromatic amines in cyclohexane/p-TSA

Scheme 1

medium to yield highly substituted pyrroles 7a-1 in 64$92 \%$ yields (Scheme 2). For example, the product formed in the reaction of 6 and 4-methoxyaniline was assigned 5-(4-fluorophenyl)-2-isopropyl-1-(4-methoxyphenyl)- $N, 4$ -diphenyl-1 H-pyrrole-3-carboxamide ($7 \mathbf{h}$) structure, based on its spectral data. In the mass spectrum of $\mathbf{7 h}$, the highest ion peak was observed at $\mathrm{m} / \mathrm{z} 488\left(\mathrm{M}^{+}\right)$. The IR spectrum of the product 7 h showed the presence of amide $\mathrm{NH}\left(3388 \mathrm{~cm}^{-1}\right)$ and $\mathrm{C}=\mathrm{O}\left(1663 \mathrm{~cm}^{-1}\right)$ functions. The ${ }^{1} \mathrm{H}-$ NMR spectrum of $\mathbf{7 h}$ was characterized by the presence of signals at $\delta \mathrm{ppm}$, due to isopropyl group ($\mathrm{d}, 1.21,6 \mathrm{H}$; $\mathrm{m}, 2.8,1 \mathrm{H}$), methoxy group ($\mathrm{s}, 3.75,3 \mathrm{H}$), aromatic protons ($\mathrm{m}, 6.9-7.55,18 \mathrm{H}$) and the amide protons (br s, 9.95, deuterium exchangeable).
$\delta 1.05\left(\mathrm{~d}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.74(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-$ CH_{2}), 6.96-7.48 (m, 14H, Ar-H), $9.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$, deuterium exchangeable).

In conclusion we have demonstrated an efficient synthesis of highly substituted pyrrole and bis pyrrole derivatives is provided.

EXPERIMENTAL

The ${ }^{1} \mathrm{H}$-NMR spectra were recorded in DMSO- d_{6} using 400 and 200 MHz , respectively on a Varian Gemini 2000 FT NMR spectrometer. Chemical shifts were reported in $\delta \mathrm{ppm}$ relative to TMS. FT-IR spectra were recorded in the solid state as KBr dispersion using Perkin-Elmer 1650 FT-IR spectrometer. Mass spectra (70 eV) were recorded on HP-5989 A LC-MS spectrometer. Melting points were determined by using the capillary method on POLMON (Model MP-96) melting point apparatus. Solvents and reagents were used without further purification.

4-Methyl-3-oxo-pentanoic acid methyl ester (3). To a mixture of 60% sodium hydride ($10.25 \mathrm{~g}, 0.256 \mathrm{~mole}$) in tetrahydro furan $(150 \mathrm{~mL})$ was added 3-methyl-2-butanone (1, $10 \mathrm{~g}, 0.116$ mole) slowly drop wise below $15^{\circ} \mathrm{C}$, after 20 minutes maintenance, slowly added dimethyl carbonate ($2,15.7$ $\mathrm{g}, 0.174$ mole) dropwise below $20^{\circ} \mathrm{C}$. Then the temperature was slowly increased to $30^{\circ} \mathrm{C}$ and maintained for $18-20$ hours. The excess sodium hydride was quenched with acetic acid till the pH reaches to 6 , followed by added water (300 mL) below $10^{\circ} \mathrm{C}$. The resultant reaction mass was extracted with dichloromethane ($2 \times 100 \mathrm{~mL}$) and the combined organic layers washed with water. The separated organic layer was concentrated under vacuum. The compound 3 was collected at $75-85^{\circ} \mathrm{C}$ under vacuum (~ 10 mbar) in 85% yield, bp $147^{\circ} \mathrm{C}-149^{\circ} \mathrm{C}$, mass $(\mathrm{m} / \mathrm{z})$:

Scheme 3

Reaction of 6 with different α, ω-diamines afforded the corresponding bis pyrrole derivatives 8a-c in 80-85 \% yield (Scheme 3). For example, the product formed the reaction of 6 with 1,2-diaminoethane in a mixture of toluene and cyclohexane in the presence of acetic acid at reflux temperature was characterized as 1,1'-ethane-1,2-diylbis[5-(4-fluorophenyl)-2-isopropyl- $N, 4$-diphenyl- $1 H$ -pyrrole-3-carboxamide] (8a) based on IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and mass spectral data. In mass spectrum of $\mathbf{8 a}$, molecular ion peak appeared at $822\left(\mathrm{M}^{+}\right)$and IR spectrum showed amide $\mathrm{NH}\left(3410 \mathrm{~cm}^{-1}\right)$ and carbonyl (1670 $\left.\mathrm{cm}^{-1}\right)$ absorptions. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{8 a}$ displayed signals at

144, ir $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 1721(\mathrm{C}=\mathrm{O}),{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{-\mathrm{d}}^{6}, \mathrm{\delta} \mathrm{ppm}\right): 0.9$ (d, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.21\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.9(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.92(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 4.6 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}$).

4-Methyl-3-oxo-pentanoic acid phenylamide (4). To a mixture of $\mathbf{3}$ ($10 \mathrm{~g}, 0.07 \mathrm{~mole}$) and ethylene diamine (4.55 g , 0.076 mole $)$ in toluene (80 mL) was added aniline ($16.3 \mathrm{~g}, 0.175$ mole) slowly drop wise, then the temperature was maintained at reflux for 18-20 hours (vide TLC), then the reaction mass was cooled to room temperature and the unreacted aniline washed away with 5% hydrochloric acid (25 mL) followed by water (2 x 100 mL). The organic layer was concentrated under reduced pressure to obtain compound $\mathbf{4}$ as viscous liquid in 80% yield, bp $261^{\circ} \mathrm{C}-264^{\circ} \mathrm{C}$, mass (m / z): 205, ir $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3299(\mathrm{NH})$,

Table 1
CHN Analysis Data for Compounds 7a-l and 8a-c

Compd No.	Mol. Formula	Calculated			Found		
		C	H	N	C	H	N
7a	$\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~F} \mathrm{~N}_{2} \mathrm{O}$	78.62	6.11	6.79	78.71	6.02	6.68
7b	$\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}$	79.43	6.21	6.39	79.27	6.35	6.40
7c	$\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{FN}_{2} \mathrm{O}$	79.26	6.87	6.16	79.30	6.92	6.22
7d	$\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{FN}_{2} \mathrm{O}$	79.46	7.10	5.98	79.12	7.16	6.11
7e	$\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{FN} \mathrm{N}_{3} \mathrm{O}$	77.31	6.71	8.73	77.56	6.72	8.71
7f	$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~F} \mathrm{~N}_{2} \mathrm{O}$	80.99	5.73	5.90	80.90	5.75	5.58
7 g	$\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{FN}_{2} \mathrm{O}$	81.12	5.98	5.73	81.03	6.12	5.50
7h	$\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{FN}_{2} \mathrm{O}_{2}$	78.55	5.79	5.55	78.81	5.71	5.66
7 i	$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{Cl} \mathrm{FN}_{2} \mathrm{O}$	75.51	5.15	5.50	75.30	5.20	5.83
7 j	$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}$	78.03	5.32	5.69	78.30	5.40	5.55
7k	$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{ClFN} \mathrm{N}_{2} \mathrm{O}$	75.51	5.15	5.50	75.25	5.25	5.30
71	$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}_{2}$	78.35	5.55	5.71	78.02	5.70	5.92
8 a	$\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$	78.81	5.88	6.81	78.63	6.01	6.97
8b	$\mathrm{C}_{55} \mathrm{H}_{50} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$	78.92	6.02	6.69	78.61	6.22	6.63
8c	$\mathrm{C}_{56} \mathrm{H}_{52} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}$	79.03	6.16	6.58	78.30	6.30	6.71

Table 2
Characterization Data of Compounds 7a-7l and 8a-c

Compd No.	$\begin{gathered} \text { MR } \\ { }^{\circ} \mathrm{C} \end{gathered}$	Reaction Time (hrs)	Yield (\%)	$\begin{gathered} \mathbf{M}^{+} \\ (\mathbf{m} / \mathbf{z}) \end{gathered}$	$\begin{array}{rc} \text { IR } & \left(\mathrm{cm}^{-1}\right) \\ \mathrm{NH} & \text { amide } \\ & \mathrm{C}=\mathbf{O} \end{array}$	${ }^{1} \mathrm{H}-\mathrm{NMR}$ (δ-ppm)
7 a	185-187	12	90*	$412{ }^{\text {d }}$	3391, 1669	$1.35(\mathrm{~d}, 6 \mathrm{H}), 3.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 6.9-7.55(\mathrm{~m}, 14 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 9.75$ (s, 1H, NH)
7b	189-192	10	$92^{\#}$	$438{ }^{\text {c }}$	3367, 1644	$\begin{aligned} & 1.05(\mathrm{~m}, 1 \mathrm{H}), 1.4(\mathrm{~d}, 6 \mathrm{H}), 3.5-3.7(\mathrm{~m}, 1 \mathrm{H}, \mathrm{~N}-\mathrm{CH}), 6.9-7.55(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) \text {, } \\ & 9.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \end{aligned}$
7c	148-150	10	$89^{\#}$	$454{ }^{\text {e }}$	3396, 1657	$\begin{aligned} & 0.75(\mathrm{t}, 3 \mathrm{H}), 0.9-1.5(\mathrm{~m}, 11 \mathrm{H}), 3.8\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{~N}-\mathrm{CH}_{2}\right), 6.9-7.55(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) \text {, } \\ & 9.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \end{aligned}$
7d	102-104	8	88 ${ }^{\#}$	$468{ }^{\text {a }}$	3407, 1663	$\begin{aligned} & 0.78\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.8-1.6(\mathrm{~m}, 13 \mathrm{H}), 3.75\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{~N}-\mathrm{CH}_{2}\right), 6.9-7.55(\mathrm{~m}, 14 \mathrm{H} \text {, } \\ & \text { Ar-H), } 9.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \end{aligned}$
7e	99-101	5	$81^{\#}$	$481^{\text {a }}$	3412, 1664	$\begin{aligned} & 0.6-1.75(\mathrm{~m}, 14 \mathrm{H}), 3.4\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{~N}-\mathrm{CH}_{2}\right), 6.9-7.55(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.65(\mathrm{~s}, 1 \mathrm{H}, \\ & \mathrm{NH}) \end{aligned}$
7 f	134-136	9	86 ${ }^{\text {\# }}$	$474{ }^{\text {b }}$	3411, 1664	1.22 (d, 6H, $\left.2 \times \mathrm{CH}_{3}\right), 2.8(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.75-7.6(\mathrm{~m}, 19 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$
7 g	211-214	16	$85^{\#}$	$488{ }^{\text {a }}$	3409, 1664	$\begin{aligned} & 1.22\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{CH}_{3}\right), 2.3\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.8(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.9-7.6(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar}- \\ & \mathrm{H}), 9.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \end{aligned}$
7h	105-106	8	85 ${ }^{\text {\# }}$	$504{ }^{\text {e }}$	3388, 1663	$\begin{aligned} & 1.21\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{CH}_{3}\right), 2.8(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) 6.9-7.55(\mathrm{~m}, 18 \mathrm{H}, \\ & \operatorname{Ar}-\mathrm{H}), 9.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \end{aligned}$
7 i	200-203	18	$64^{\text {® }}$	$508^{\text {a }}$	3406, 1671	$\begin{aligned} & 1.20\left(\mathrm{~d}, 6 \mathrm{H} 2 \times \mathrm{CH}_{3}\right), 2.8(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.9-7.55(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.98(\mathrm{~s}, 1 \mathrm{H}, \\ & \mathrm{NH}) \end{aligned}$
7j	189-191	18	66^{\circledR}	$492^{\text {a }}$	3405, 1667	$\begin{aligned} & 1.20\left(\mathrm{~d}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.8(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.9-7.6(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.98(\mathrm{~s}, 1 \mathrm{H}, \\ & \mathrm{NH}) \end{aligned}$
7k	210-214	20	$71^{\text {® }}$	$508{ }^{\text {a }}$	3410, 1670	1.20 (d, 6H, $2 \times \mathrm{CH}_{3}$), 6.9-7.55 (m, 18H, Ar-H), 9.85 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}\right)$
71	232-235	12	$83{ }^{\text {® }}$	$490{ }^{\text {a }}$	$\begin{aligned} & 3300 \text { (br), } \\ & 1667 \end{aligned}$	$\begin{aligned} & 1.21\left(\mathrm{~d}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.75-7.55(\mathrm{~m}, \\ & 18 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \end{aligned}$
8 a	301-304	10	85	$822^{\text {f }}$	3410, 1670	$\begin{aligned} & 1.05\left(\mathrm{~d}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{~N}^{2} \mathrm{CH}_{2}\right), 6.96-7.48(\mathrm{~m}, \\ & 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \end{aligned}$
8b	312-314	12	83	$836{ }^{\text {f }}$	3411, 1672	$1.10\left(\mathrm{~d}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.9(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.12\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right) 3.34(\mathrm{t}, 2 \mathrm{H},$ $\left.\mathrm{N}-\mathrm{CH}_{2}\right), 6.96-7.58(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$
8c	327-331	14	90	$850{ }^{\text {f }}$	3407, 1668	$1.08\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{CH}_{3}\right), 1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 2.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.31(\mathrm{t}$, $\left.2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 6.96-7.6(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$

 of 7 g (DMSO- d_{6}): $\delta 20.6,21.98,26.17,38.24,40.75,114.5,114.96,117.7,119.4,120.7,123,125.7,127.7,128.4,129,129.3,129.5,132.9,133.1$, $134.5,134.8,137.5,137.9,139.3,165.68$; [c] Recrystallised from (a) Pet ether (b) Cyclohexane (c) Ethanol: $\mathrm{H}_{2} \mathrm{O}$ (1:1) (d) Pet ether: Isopropyl alcohol (1:1) (e) Pet ether: Isopropyl alcohol (8:2) (f) Ethyl acetate: Pet ether (1:1) Isopropyl alcohol (8:2) (f) Ethyl acetate: Pet ether (1:1); \# Prepared in method A; @ Prepared in method B.

3045(CH) 1729 (C=O), 1652 (amide C=O), ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$, $\delta \mathrm{ppm}): 0.92\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 3.95 (s, 2H, CH 2), 6.63-7.00 (m, 5H, Ar-H), 9.8 (s, 1H, NH).

2-Benzylidine-4-methyl-3-oxo-pentanoic acid phenylamide (5). A mixture of 4 ($10 \mathrm{~g}, 0.048$ mole), β-alanine ($2.2 \mathrm{~g}, 0.024$ mole), benzaldehyde ($9.3 \mathrm{~g}, 0.087 \mathrm{~mole}$) and acetic acid (0.3 g ,
0.005 mole) in n-hexane (120 mL) were maintained at reflux temperature and water was collected azetropically for 8-12 hours (vide TLC). The obtained solid was collected by filtered at $10-$ $15^{\circ} \mathrm{C}$ and washed with n-hexane followed by drying, yielded compound 5 in 90% yield as cream solid, mp $190-193^{\circ} \mathrm{C}$, mass $(\mathrm{m} / \mathrm{z}): 293$, ir ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3312(\mathrm{NH}), 3049(\mathrm{CH}) 1729(\mathrm{C}=\mathrm{O})$,

1663 (amide $\mathrm{C}=\mathrm{O}$), ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO- $\mathrm{d}_{6}, \delta \mathrm{ppm}$): 1.01 (d, 3 H , CH_{3}), $1.23\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) 5.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 6.8-7.2 (m, 10H, Ar-H), 10.2 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$.

2-[2-(4-Fluorophenyl)-2-oxo-1-phenylethyl]-4-methyl-3-oxoN -phenylpentanamide (6). A mixture of 5 ($10 \mathrm{~g}, 0.034$ mole), 3-ethyl-5-(2-hydroxyethyl)-4-methyl-3-thiazolium bromide (8.3 $\mathrm{g}, 0.033$ mole), 4 -fluoro benzaldehyde ($5.6 \mathrm{~g}, 0.045 \mathrm{~mole}$) and triethyl amine ($7.6 \mathrm{~g}, 0.075$ mole) were maintained at $65-70^{\circ} \mathrm{C}$ for $10-14$ hours (vide TLC) under neat reaction conditions. Isopropyl alcohol was added (25 mL) and the reaction mixtures was cooled to room temperature and maintained for 3-4 hours. The obtained solid was collected by filtration, washed with isopropyl alcohol (10 mL), and dried to give compound $\mathbf{6}$ in 84% yield as white solid, $\mathrm{mp} 206-209^{\circ} \mathrm{C}$; ir $\left(\mathrm{cm}^{-1}\right): 3295(\mathrm{NH})$, 1721, 1683(C=O), 1652, 1598 (amide $\mathrm{C}=\mathrm{O}$). ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right.$, $\delta \mathrm{ppm}): 0.94\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.17\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 4.88 (d, 1H, CH), 5.43 (d, 1H, CH), 6.98-7.39 (m, 12H, Ar-H), 8.10-8.17(d, 2H, Ar-H), 10.19 (s, 1H, NH); ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}\right.$, $\delta \mathrm{ppm}): 17.88,18.81,38.92,51.82,63.07$, 115.71, 119.64, 123.87, 127.47, 128.58, 128.81, 131.70, 132.18, 135.08, 138.10, 164.93,164.97, 196.38, 207.99.

General procedure for the preparation of compounds (7a-71).

Method A. A mixture of 2-[2-(4-fluorophenyl)-2-oxo-1-phenylethyl]-4-methyl-3-oxo- N-phenylpentanamide ($6,1.0 \mathrm{~g}$, 0.0024 mole), the appropriate amine (0.0029 mole) and p toluenesulfonic acid ($0.2 \mathrm{~g}, 0.0011 \mathrm{~mole}$) in cyclohexane (20 mL) was maintained at reflux until completion of the reaction (vide TLC). The reaction mixture was then cooled to $30^{\circ} \mathrm{C}$, dissolved in ethyl acetate (5 mL) and the resulting solution washed with 10% sodium bicarbonate solution ($2 \times 10 \mathrm{~mL}$) followed by water (10 mL). The organic layer was separated and concentrated under vacuum and the resulting residue was triturated with the appropriate solvent ($10-15 \mathrm{~mL}$) and recrystallised (Table-2).

Method B. To a solution of 2-[2-(4-fluorophenyl)-2-oxo-1-phenylethyl]-4-methyl-3-oxo- N -phenylpentanamide ($6,1.0 \mathrm{~g}$, 0.0024 mole), ethanol (5 mL) and acetic acid (5 mL), the appropriate amine (0.0029 mole) was added and the mixture was refluxed on oil-bath till the completion of the reaction (vide TLC). The reaction mixture was cooled to $30^{\circ} \mathrm{C}$, dissolved in ethyl acetate (20 mL) and washed with 10% sodium bicarbonate solution ($2 \times 10 \mathrm{~mL}$) followed by water (10 mL). The organic layer was separated, concentrated under vacuum and the obtained residue was triturated with appropriate solvent and recrystallised (Table-2).

General procedure for the preparation of bis pyrrole derivatives ($\mathbf{8 a - 8 c}$). A mixture of 2-[2-(4-fluorophenyl)-2-oxo-1-phenylethyl]-4-methyl-3-oxo- N-phenylpentanamide ($\mathbf{6}, 1.0 \mathrm{~g}$, 0.0024 mole), appropriate diamine (0.006 mole) and acetic acid (3 mL) in toluene and cyclohexane ($30 \mathrm{~mL}, 1: 1$ mixture) was maintained at reflux for $10-15$ hours (vide TLC). The reaction mixture was cooled to $30^{\circ} \mathrm{C}$, dissolved in ethyl acetate (20 mL)
and washed with 10% sodium bicarbonate solution ($2 \times 15 \mathrm{~mL}$) followed by water $(10 \mathrm{~mL})$. The organic layer was separated and concentrated under vacuum, the resulting solid was recrystallised from ethyl acetate and diethyl ether (1:1).

Acknowledgement. The authors wish to thank the management of Dr. Reddy's Laboratories Limited for providing facilities to carry out this work and co-operation extended by all the colleagues is gratefully acknowledged.

REFERENCES AND NOTES

[1] (a) Comprehensive Heterocyclic Chemistry; Bird, C.W. Ed.; Pergamon Press: Oxford, 1996; Vol. 2. For some recent examples on biological activity of pyrrole derivatives, see: (b) Micheli, F.; Di Fabio, R.; Cavanni, P.; Rimland, J. M.; Capelli, A. M.; Chiamulera, C.; Corsi, M.; Corti, C.; Donati, D.; Feriani, A.; Ferraguti, F.; Maffeis, M.; Missio, A.; Ratti, E.; Paio, A.; Pachera, R.; Quartaroli, M.; Reggiani, A.; Sabbatini, F. M.; Trist, D. G.; Ugolini, A.; Vitulli, G. Bioorg. Med. Chem. 2003, 11, 171. (c) Mach, R. H.; Huang, Y. S.; Freeman, R. A.; Wu, L.; Blair, S.; Luedtke, R. R. Bioorg. Med. Chem. 2003, 11, 225. (d) Bleicher, K. H.; Wuthrich, Y.; Adam, G.; Hoffmann, T.; Sleight, A. J. Bioorg. Med. Chem. Lett. 2002, 12, 3073. (e) Hackling, A. E.; Stark, H. Chem. Bio-Chem. 2002, 3, 946. (f) El-Gaby, M. S. A.; Gaber, A. M.; Atalla, A. A.; Al-Wahab, K. A. A. Farmaco 2002, 57, 613.
[2] (a) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435 and references therein. (b) Hoffmann, H.; Lindel, T. Synthesis 2003, 1753. (c) Fu"rstner, A. Angew. Chem., Int. Ed. 2003, 42, 3582. (d) Lindquist, N.; Fenical, W.; Van Duyne, G. D.; Clardy, J. J. Org. Chem. 1988, 53, 4570. (e) Boger, D.; Boyce, C. W.; Labroli, M. A.; Sehon, C. A.; Jin, Q. J. Am. Chem. Soc. 1999, 121, 54.
[3] (a) Colotta, V.; Cecchi, L.; Melani, F.; Filacchioni, G.; Martini, C.; Giannaccini, G.; Lucacchini, A. J. Med. Chem. 1990, 33, 2646. (b) Cozzi, P.; Mongelli, N. Curr. Pharm. Des. 1998, 4, 181. (c) Huffman, J. W. Curr. Med. Chem. 1999,6, 705.
[4] (a) Curran, D.; Grimshaw, J.; Perera, S. D. Chem. Soc. Rev. 1991, 20, 391. (b) Deronzier, A.; Moutet, J. -C. Curr. Top. Electrochem. 1994, 3, 159. (c) Lee, C. F.; Yang, L. M.; Hwu, T. Y.; Feng, A. S.; Tseng, J. C.; Luh, T. Y. J. Am. Chem. Soc. 2000, 122, 4992 and references therein.
[5] (a) Knorr, L. Chem. Ber. 1884, 17, 1635. (b) Paal, C. Chem. Ber. 1885, 18, 367. (c) Amarnath, V.; Anthony, D. C.; Amarnath, K.; Valentine, W. M.; Wetterau, L. A.; Graham, D. G. J. Org. Chem. 1991, 56, 6924. (d) Pyrroles, Part II; Jones, R. A. 1992, Wiley Ed: New York,. (e) Gribble, G. W. In Comprehensive Heterocyclic Chemistry II; Katrizky, A. R.; Rees, C. W.; Scriven, E. F. Eds. Pergamon Press: Oxford, 1996; Vol. 2, p 207. For a solid-phase approach to the synthesis of pyrroles from 1,4-dicarbonyl compounds, see: Raghavan, S.; Anuradha, K. Synlett 2003, 711.
[6] Merlic, C. A.; Baur, A.; Aldrich, C. C. J. Am. Chem. Soc. 2000, 122, 7398.
[7] Kel'in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001, 123, 2074.
[8] Wang, Y. L.; Zhu, S. Z. Org. Lett. 2003, 5, 745.
[9] Takaya, H.; Kojima, S.; Murahashi, S. I. Org. Lett. 2001, 3, 421.
[10] Butler, D. E.; Deering, C. F.; Millar, A.; Nanninga, T. N.; Roth, B. D. WO 89/07598, 1989, Chem. Abstr. 1989, 112, 216691.

