Jul-Aug 2007 An Efficient Synthesis of Highly Substituted Pyrrole and Bis Pyrrole Derivatives

Rajeshwar Reddy Sagyam[a], Himabindu Vurimidi[b], Pratap Reddy Padi[a] and Mahesh Reddy Ghanta[a]*

[a] Department of Research and Development; Unit-III, Dr. Reddys Laboratories Ltd., Plot.No.116, S.V. Co-operative Industrial Estate, IDA, Bollaram, Jinnaram Medak Dist.-502325, Andhra Pradesh, India
[b] Institute of Science and Technology, Center for Environmental Science, J. N. T. University, Kukatpally, Hyderabad-500 072, India
*Corresponding author: Tel: +91 9849250324, Fax: +91 40 23750984,

> E-mail: *reddyghanta@yahoo.com* Received April 20, 2006

An efficient synthesis of highly substituted pyrrole and bis pyrrole derivatives is reported.

J. Heterocyclic Chem., 44, 923 (2007).

INTRODUCTION

Pyrrole heterocycle is an important structural attribute in many bioactive natural products, [1,2] therapeutic compounds [3] and new organic materials [4]. Consequently, the efficient assembly of this class of molecules is a significant objective in synthetic chemistry. The construction of the pyrrole ring system typically involves condensation of preformed intermediates with amines [5]. More contemporary transition-metal-based strategies include the addition of chromium carbenes to dipolarophiles [6], the copper(I)catalyzed cycloisomeri- zation of alkynyl imines [7] and rhodium-catalysed reactions, either N-H insertions [8] or the combination of isonitriles and 1,3-diketones [9]. Herein, we report the realization of an efficient assembly of highly substituted pyrroles (7) and bis pyrroles (8) by utilizing a Paal-Knorr sequence between 1,4-diketo compound (6) and amines catalysed by an organic acid.

RESULTS AND DISCUSSION

The required key 1,4-diketo intermediate, 2-[2-(4-fluorophenyl)-2-oxo-1-phenylethyl]-4-methyl-3-oxo-*N*-phenylpentanamide (6) was accessed by a synthetic sequence starting from commercially available 3-methyl-2-butanone (1). Reaction of ketone 1 with carbonic acid dimethyl ester (2) in the presence of sodium hydride afforded 4-methyl-3-oxo-pentanoic acid methyl ester (3), which on reaction with aniline gave 4-methyl-3-oxo-pentanoic acid phenylamide (4). Condensation of 4 with benzaldehyde resulted in 2-benzylidine-4-methyl-3-oxo-pentanoic acid phenylamide (5) and subsequent condensation with 4-fluorobenzaldehyde yielded the desired highly substituted key intermediate 6 (Scheme 1). The structural assignment of 6 was in agreement with the reported literature [10].

1,4-Diketo derivative **6** reacted readily with various aliphatic and aromatic amines in cyclohexane/*p*-TSA

medium to yield highly substituted pyrroles **7a-1** in 64-92% yields (Scheme 2). For example, the product formed in the reaction of **6** and 4-methoxyaniline was assigned 5-(4-fluorophenyl)-2-isopropyl-1-(4-methoxyphenyl)-*N*,4diphenyl-1*H*-pyrrole-3-carboxamide (**7h**) structure, based on its spectral data. In the mass spectrum of **7h**, the highest ion peak was observed at m/z 488(M⁺). The IR spectrum of the product **7h** showed the presence of amide NH (3388 cm⁻¹) and C=O (1663 cm⁻¹) functions. The ¹H-NMR spectrum of **7h** was characterized by the presence of signals at δ ppm, due to isopropyl group (d, 1.21, 6H; m, 2.8, 1H), methoxy group (s, 3.75, 3H), aromatic protons (m, 6.9-7.55, 18H) and the amide protons (br s, 9.95, deuterium exchangeable). δ 1.05 (d, 6H, 2 x CH₃), 1.82 (m, 1H, CH), 3.74 (s, 2H, N-CH₂), 6.96-7.48 (m, 14H, Ar-H), 9.79 (s, 1H, NH, deuterium exchangeable).

In conclusion we have demonstrated an efficient synthesis of highly substituted pyrrole and bis pyrrole derivatives is provided.

EXPERIMENTAL

The ¹H-NMR spectra were recorded in DMSO-d₆ using 400 and 200 MHz, respectively on a Varian Gemini 2000 FT NMR spectrometer. Chemical shifts were reported in δ ppm relative to TMS. FT-IR spectra were recorded in the solid state as KBr dispersion using Perkin-Elmer 1650 FT-IR spectrometer. Mass spectra (70 eV) were recorded on HP-5989 A LC-MS spectrometer. Melting points were determined by using the capillary method on POLMON (Model MP-96) melting point apparatus. Solvents and reagents were used without further purification.

4-Methyl-3-oxo-pentanoic acid methyl ester (3). To a mixture of 60% sodium hydride (10.25 g, 0.256 mole) in tetrahydro furan (150 mL) was added 3-methyl-2-butanone (1, 10 g, 0.116 mole) slowly drop wise below 15° C, after 20 minutes maintenance, slowly added dimethyl carbonate (2, 15.7 g, 0.174 mole) dropwise below 20° C. Then the temperature was slowly increased to 30° C and maintained for 18-20 hours. The excess sodium hydride was quenched with acetic acid till the pH reaches to 6, followed by added water (300 mL) below 10° C. The resultant reaction mass was extracted with dichloromethane (2 x 100 mL) and the combined organic layers washed with water. The separated organic layer was concentrated under vacuum. The compound **3** was collected at 75-85°C under vacuum (~10 mbar) in 85% yield, bp 147°C-149°C, mass (m/z):

Reaction of **6** with different α, ω -diamines afforded the corresponding bis pyrrole derivatives **8a-c** in 80-85 % yield (Scheme 3). For example, the product formed the reaction of **6** with 1,2-diaminoethane in a mixture of toluene and cyclohexane in the presence of acetic acid at reflux temperature was characterized as 1,1'-ethane-1,2-diylbis[5-(4-fluorophenyl)-2-isopropyl-*N*,4-diphenyl-1*H*-pyrrole-3-carboxamide] (**8a**) based on IR, ¹H-NMR and mass spectral data. In mass spectrum of **8a**, molecular ion peak appeared at 822 (M⁺) and IR spectrum showed amide NH (3410 cm⁻¹) and carbonyl (1670 cm⁻¹) absorptions. ¹H-NMR Spectrum of **8a** displayed signals at

144, ir (KBr, cm⁻¹): 1721(C=O), ¹H nmr (DMSO-d₆, δ ppm): 0.9 (d, 3H, CH₃), 1.21 (d, 3H, CH₃), 2.9 (m, 1H, CH), 3.92 (s, 2H, CH₂), 4.6 (s, 3H, -OCH₃).

4-Methyl-3-oxo-pentanoic acid phenylamide (4). To a mixture of **3** (10 g, 0.07 mole) and ethylene diamine (4.55 g, 0.076 mole) in toluene (80 mL) was added aniline (16.3 g, 0.175 mole) slowly drop wise, then the temperature was maintained at reflux for 18-20 hours (*vide* TLC), then the reaction mass was cooled to room temperature and the unreacted aniline washed away with 5% hydrochloric acid (25 mL) followed by water (2 x 100 mL). The organic layer was concentrated under reduced pressure to obtain compound **4** as viscous liquid in 80 % yield, bp 261°C-264°C, mass (m/z):205, ir (KBr, cm⁻¹): 3299 (NH),

Compd No.	Mol. Formula		Calculated	Found			
		С	н	Ν	С	н	Ν
7a	$C_{27}H_{25}FN_2O$	78.62	6.11	6.79	78.71	6.02	6.68
7b	$C_{29}H_{27}FN_2O$	79.43	6.21	6.39	79.27	6.35	6.40
7c	$C_{30}H_{31}FN_2O$	79.26	6.87	6.16	79.30	6.92	6.22
7d	$C_{31}H_{33}FN_2O$	79.46	7.10	5.98	79.12	7.16	6.11
7e	$C_{31}H_{32}FN_3O$	77.31	6.71	8.73	77.56	6.72	8.71
7f	$C_{32}H_{27}FN_2O$	80.99	5.73	5.90	80.90	5.75	5.58
7g	$C_{33}H_{29}FN_2O$	81.12	5.98	5.73	81.03	6.12	5.50
7h	$C_{33}H_{29}FN_2O_2$	78.55	5.79	5.55	78.81	5.71	5.66
7i	C ₃₂ H ₂₆ Cl FN ₂ O	75.51	5.15	5.50	75.30	5.20	5.83
7j	$C_{32}H_{26}F_2N_2O$	78.03	5.32	5.69	78.30	5.40	5.55
7k	C32 H26 Cl F N2 O	75.51	5.15	5.50	75.25	5.25	5.30
71	$C_{32}H_{27}FN_2O_2$	78.35	5.55	5.71	78.02	5.70	5.92
8a	$C_{54}H_{48}F_2N_4O_2$	78.81	5.88	6.81	78.63	6.01	6.97
8b	$C_{55}H_{50}F_2N_4O_2$	78.92	6.02	6.69	78.61	6.22	6.63
8c	$C_{56}H_{52}F_2N_4O_2$	79.03	6.16	6.58	78.30	6.30	6.71

Table 1 CHN Analysis Data for Compounds 7a-l and 8a-c

Table 2

Characterization Data of Compounds 7a-7l and 8a-c

Compd No.	MR °C	Reaction Time (hrs)	Yield (%)	M ⁺ (m/z)	IR NH	(cm ⁻¹) amide C=O	' H-NMR (δ- ppm)
7a	185-187	12	90 [#]	412 ^d	3391,	1669	1.35 (d, 6H), 3.42 (s, 3H, N-CH ₃), 6.9-7.55 (m, 14H, Ar-H), 9.75 (s, 1H, NH)
7ь	189-192	10	92#	438°	3367,	1644	1.05 (m, 1H), 1.4 (d, 6H), 3.5-3.7 (m, 1H, N-CH), 6.9-7.55 (m, 14H, Ar-H), 9.75 (s, 1H, NH)
7c	148-150	10	89#	454°	3396,	1657	0.75 (t, 3H), 0.9-1.5 (m, 11H), 3.8 (t, 2H, N-CH ₂), 6.9-7.55 (m, 14H, Ar-H), 9.75 (s, 1H, NH)
7d	102-104	8	88#	468 ^a	3407,	1663	0.78 (t, 3H, CH ₃), 0.8-1.6 (m, 13H), 3.75 (t, 2H, N-CH ₂), 6.9-7.55 (m, 14H, Ar-H), 9.75 (s, 1H, NH)
7e	99-101	5	81#	481ª	3412,	1664	0.6-1.75 (m, 14H), 3.4 (m, 4H, N-CH ₂), 6.9-7.55 (m, 14H, Ar-H), 9.65 (s, 1H, NH)
7f	134-136	9	86#	474 ^b	3411,	1664	1.22 (d, 6H, 2 x CH ₃), 2.8 (m, 1H, CH), 6.75-7.6 (m, 19H, Ar-H), 9.95 (s, 1H, NH)
7g	211-214	16	85#	488 ^a	3409,	1664	1.22 (d, 6H, 2 x CH ₃), 2.3 (s, 3H, CH ₃), 2.8 (m, 1H, CH), 6.9-7.6 (m, 18H, Ar-H), 9.95 (s, 1H, NH)
7h	105-106	8	85#	504°	3388,	1663	1.21 (d, 6H, 2 x CH ₃), 2.8 (m, 1H, CH), 3.75 (s, 3H, OCH ₃) 6.9-7.55 (m, 18H, Ar-H), 9.95 (s, 1H, NH)
7i	200-203	18	64 [@]	508ª	3406,	1671	1.20 (d, 6H 2 x CH ₃), 2.8 (m, 1H, CH), 6.9-7.55 (m, 18H, Ar-H), 9.98 (s, 1H, NH)
7j	189-191	18	66 [@]	492ª	3405,	1667	1.20 (d, 6H, 2 x CH ₃), 2.8 (m, 1H, CH), 6.9-7.6 (m, 18H, Ar-H), 9.98 (s, 1H, NH)
7k	210-214	20	71 [@]	508 ^a	3410,	1670	1.20 (d, 6H, 2 x CH ₃), 6.9-7.55 (m, 18H, Ar-H), 9.85 (s, 1H, NH)
71	232-235	12	83 [@]	490 ^a	3300(1667	br),	1.21 (d, 6H, 2 x CH ₃), 2.85 (m, 1H, CH), 4.35 (s, 1H, OH), 6.75-7.55 (m, 18H, Ar-H), 9.98 (s, 1H, NH)
8a	301-304	10	85	822 ^f	3410,	1670	1.05 (d, 6H, 2 x CH ₃), 1.82 (m, 1H, CH), 3.74 (s, 2H, N-CH ₂), 6.96-7.48 (m, 14H, Ar-H), 9.79 (s, 1H, NH)
8b	312-314	12	83	836 ^f	3411,	1672	1.10 (d, 6H, 2 x CH ₃), 1.9 (m, 1H, CH), 2.12 (t, 2H,N-CH ₂ -CH ₂) 3.34 (t, 2H, N-CH ₃), 6.96-7.58 (m, 14H, Ar-H), 9.75 (s, 1H, NH)
8c	327-331	14	90	850 ^f	3407,	1668	1.08 (d, 6H, 2 x CH ₃), 1.63 (m, 2H,N-CH ₂ -CH ₂), 2.05 (m, 1H, CH), 3.31 (t, 2H, N-CH ₂), 6.96-7.6 (m, 14H, Ar-H), 9.82 (s, 1H, NH)

[a] ¹H-NMR Spectra of **7a**, **7b**, **7c**, **7d**, **7e**, **7f**, **7g**, **7h**, **7i**, **7j**, **7k** and **7l** were recorded in DMSO-d₆ at 400 MHz except **7k** (200 MHz); [b] ¹³C-NMR of **7g** (DMSO-d₆): δ 20.6, 21.98, 26.17,38.24, 40.75, 114.5, 114.96, 117.7, 119.4, 120.7, 123, 125.7, 127.7, 128.4, 129, 129.3, 129.5, 132.9, 133.1, 134.5, 134.8, 137.5, 137.9, 139.3, 165.68; [c] Recrystallised from (a) Pet ether (b) Cyclohexane (c) Ethanol: H₂O (1:1) (d) Pet ether: Isopropyl alcohol (1:1) (e) Pet ether: Isopropyl alcohol (8:2) (f) Ethyl acetate: Pet ether (1:1) Isopropyl alcohol (8:2) (f) Ethyl acetate: Pet ether (1:1); # Prepared in method A; @ Prepared in method B.

3045(CH) 1729 (C=O), 1652 (amide C=O), ¹H nmr (DMSO-d₆, δ ppm): 0.92 (d, 3H, CH₃), 1.20 (d, 3H, CH₃), 2.85 (m, 1H, CH), 3.95 (s, 2H, CH₂), 6.63-7.00 (m, 5H, Ar-H), 9.8 (s, 1H, NH).

2-Benzylidine-4-methyl-3-oxo-pentanoic acid phenylamide (5). A mixture of 4 (10 g, 0.048 mole), β -alanine (2.2 g, 0.024 mole), benzaldehyde (9.3 g, 0.087 mole) and acetic acid (0.3 g, 0.005 mole) in *n*-hexane (120 mL) were maintained at reflux temperature and water was collected azetropically for 8-12 hours (*vide* TLC). The obtained solid was collected by filtered at 10-15°C and washed with *n*-hexane followed by drying, yielded compound **5** in 90% yield as cream solid, mp 190-193°C, mass (m/z): 293, ir (KBr, cm⁻¹): 3312 (NH), 3049 (CH) 1729 (C=O),

1663 (amide C=O), ¹H nmr (DMSO-d₆, δ ppm): 1.01 (d, 3H, CH₃), 1.23 (d, 3H, CH₃), 2.88 (m, 1H, CH) 5.53 (s, 1H, CH), 6.8-7.2 (m, 10H, Ar-H), 10.2 (s, 1H, NH).

2-[2-(4-Fluorophenyl)-2-oxo-1-phenylethyl]-4-methyl-3-oxo-N-phenylpentanamide (6). A mixture of 5 (10 g, 0.034 mole), 3-ethyl-5-(2-hydroxyethyl)-4-methyl-3-thiazolium bromide (8.3 g, 0.033 mole), 4-fluoro benzaldehyde (5.6 g, 0.045 mole) and triethyl amine (7.6 g, 0.075 mole) were maintained at 65-70°C for 10-14 hours (vide TLC) under neat reaction conditions. Isopropyl alcohol was added (25 mL) and the reaction mixtures was cooled to room temperature and maintained for 3-4 hours. The obtained solid was collected by filtration, washed with isopropyl alcohol (10 mL), and dried to give compound 6 in 84% yield as white solid, mp 206-209°C; ir (cm⁻¹): 3295 (NH), 1721, 1683(C=O), 1652, 1598 (amide C=O). ¹H nmr (DMSO-d₆, δ ppm): 0.94 (d, 3H, CH₃), 1.17 (d, 3H, CH₃), 2.91 (m, 1H, CH), 4.88 (d, 1H, CH), 5.43 (d, 1H, CH), 6.98-7.39 (m, 12H, Ar-H), 8.10-8.17(d, 2H, Ar-H), 10.19 (s, 1H, NH); ¹³C nmr (DMSO-d₆, δ ppm): 17.88, 18.81, 38.92, 51.82, 63.07, 115.71, 119.64, 123.87, 127.47, 128.58, 128.81, 131.70, 132.18, 135.08, 138.10, 164.93,164.97, 196.38, 207.99.

General procedure for the preparation of compounds (7a-7l).

Method A. A mixture of 2-[2-(4-fluorophenyl)-2-oxo-1phenylethyl]-4-methyl-3-oxo-*N*-phenylpentanamide (**6**, 1.0 g, 0.0024 mole), the appropriate amine (0.0029 mole) and *p*toluenesulfonic acid (0.2 g, 0.0011 mole) in cyclohexane (20 mL) was maintained at reflux until completion of the reaction (*vide* TLC). The reaction mixture was then cooled to 30 °C, dissolved in ethyl acetate (5 mL) and the resulting solution washed with 10 % sodium bicarbonate solution (2 x 10 mL) followed by water (10 mL). The organic layer was separated and concentrated under vacuum and the resulting residue was triturated with the appropriate solvent (10-15 mL) and recrystallised (Table-2).

Method B. To a solution of 2-[2-(4-fluorophenyl)-2-oxo-1phenylethyl]-4-methyl-3-oxo-*N*-phenylpentanamide (**6**, 1.0 g, 0.0024 mole), ethanol (5 mL) and acetic acid (5 mL), the appropriate amine (0.0029 mole) was added and the mixture was refluxed on oil-bath till the completion of the reaction (*vide* TLC). The reaction mixture was cooled to 30 °C, dissolved in ethyl acetate (20 mL) and washed with 10% sodium bicarbonate solution (2 x 10 mL) followed by water (10 mL). The organic layer was separated, concentrated under vacuum and the obtained residue was triturated with appropriate solvent and recrystallised (Table-2).

General procedure for the preparation of bis pyrrole derivatives (8a-8c). A mixture of 2-[2-(4-fluorophenyl)-2-oxo-1-phenylethyl]-4-methyl-3-oxo-*N*-phenylpentanamide (6, 1.0 g, 0.0024 mole), appropriate diamine (0.006 mole) and acetic acid (3 mL) in toluene and cyclohexane (30 mL, 1:1 mixture) was maintained at reflux for 10-15 hours (*vide* TLC). The reaction mixture was cooled to 30 °C, dissolved in ethyl acetate (20 mL)

and washed with 10% sodium bicarbonate solution (2 x 15 mL) followed by water (10 mL). The organic layer was separated and concentrated under vacuum, the resulting solid was recrystallised from ethyl acetate and diethyl ether (1:1).

Acknowledgement. The authors wish to thank the management of Dr. Reddy's Laboratories Limited for providing facilities to carry out this work and co-operation extended by all the colleagues is gratefully acknowledged.

REFERENCES AND NOTES

[1] (a) Comprehensive Heterocyclic Chemistry; Bird, C.W. Ed.; Pergamon Press: Oxford, 1996; Vol. 2. For some recent examples on biological activity of pyrrole derivatives, see: (b) Micheli, F.; Di Fabio, R.; Cavanni, P.; Rimland, J. M.; Capelli, A. M.; Chiamulera, C.; Corsi, M.; Corti, C.; Donati, D.; Feriani, A.; Ferraguti, F.; Maffeis, M.; Missio, A.; Ratti, E.; Paio, A.; Pachera, R.; Quartaroli, M.; Reggiani, A.; Sabbatini, F. M.; Trist, D. G.; Ugolini, A.; Vitulli, G. *Bioorg. Med. Chem.* **2003**, *11*, 171. (c) Mach, R. H.; Huang, Y. S.; Freeman, R. A.; Wu, L.; Blair, S.; Luedtke, R. R. *Bioorg. Med. Chem.* **2003**, *11*, 225. (d) Bleicher, K. H.; Wuthrich, Y.; Adam, G.; Hoffmann, T.; Sleight, A. J. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 3073. (e) Hackling, A. E.; Stark, H. *Chem. Bio-Chem.* **2002**, *3*, 946. (f) El-Gaby, M. S. A.; Gaber, A. M.; Atalla, A. A.; Al-Wahab, K. A. A. *Farmaco* **2002**, *57*, 613.

[2] (a) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435 and references therein. (b) Hoffmann, H.; Lindel, T. Synthesis 2003, 1753. (c) Fu⁻rstner, A. Angew. Chem., Int. Ed. 2003, 42, 3582. (d) Lindquist, N.; Fenical, W.; Van Duyne, G. D.; Clardy, J. J. Org. Chem. 1988, 53, 4570. (e) Boger, D.; Boyce, C. W.; Labroli, M. A.; Sehon, C. A.; Jin, Q. J. Am. Chem. Soc. 1999, 121, 54.

[3] (a) Colotta, V.; Cecchi, L.; Melani, F.; Filacchioni, G.;
Martini, C.; Giannaccini, G.; Lucacchini, A. J. Med. Chem. 1990, 33,
2646. (b) Cozzi, P.; Mongelli, N. Curr. Pharm. Des. 1998, 4, 181. (c)
Huffman, J. W. Curr. Med. Chem. 1999,6, 705.

[4] (a) Curran, D.; Grimshaw, J.; Perera, S. D. Chem. Soc. Rev.
1991, 20, 391. (b) Deronzier, A.; Moutet, J. -C. Curr. Top. Electrochem.
1994, 3, 159. (c) Lee, C. F.; Yang, L. M.; Hwu, T. Y.; Feng, A. S.; Tseng, J. C.; Luh, T. Y. J. Am. Chem. Soc. 2000, 122, 4992 and references therein.

[5] (a) Knorr, L. Chem. Ber. 1884, 17, 1635. (b) Paal, C. Chem. Ber. 1885, 18, 367. (c) Amarnath, V.; Anthony, D. C.; Amarnath, K.; Valentine, W. M.; Wetterau, L. A.; Graham, D. G. J. Org. Chem. 1991, 56, 6924. (d) Pyrroles, Part II; Jones, R. A. 1992, Wiley Ed: New York,.
(e) Gribble, G. W. In Comprehensive Heterocyclic Chemistry II; Katrizky, A. R.; Rees, C. W.; Scriven, E. F. Eds. Pergamon Press: Oxford, 1996; Vol. 2, p 207. For a solid-phase approach to the synthesis of pyrroles from 1,4-dicarbonyl compounds, see: Raghavan, S.; Anuradha, K. Synlett 2003, 711.

[6] Merlic, C. A.; Baur, A.; Aldrich, C. C. J. Am. Chem. Soc. 2000, 122, 7398.

[7] Kel'in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001, 123, 2074.

[8] Wang, Y. L.; Zhu, S. Z. Org. Lett. 2003, 5, 745.

[9] Takaya, H.; Kojima, S.; Murahashi, S. I. Org. Lett. 2001, 3, 421.

[10] Butler, D. E.; Deering, C. F.; Millar, A.; Nanninga, T. N.; Roth, B. D. WO 89/07598, 1989, *Chem. Abstr.* **1989**, *112*, 216691.